Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
PLoS Negl Trop Dis ; 18(4): e0012075, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574163

RESUMO

Chikungunya can have longstanding effects on health and quality of life. Alongside the recent approval of the world's first chikungunya vaccine by the US Food and Drug Administration in November 2023 and with new chikungunya vaccines in the pipeline, it is important to understand the perspectives of stakeholders before vaccine rollout. Our study aim is to identify key programmatic considerations and gaps in Evidence-to-Recommendation criteria for chikungunya vaccine introduction. We used purposive and snowball sampling to identify global, national, and subnational stakeholders from outbreak prone areas, including Latin America, Asia, and Africa. Semi-structured in-depth interviews were conducted and analysed using qualitative descriptive methods. We found that perspectives varied between tiers of stakeholders and geographies. Unknown disease burden, diagnostics, non-specific disease surveillance, undefined target populations for vaccination, and low disease prioritisation were critical challenges identified by stakeholders that need to be addressed to facilitate rolling out a chikungunya vaccine. Future investments should address these challenges to generate useful evidence for decision-making on new chikungunya vaccine introduction.


Assuntos
Febre de Chikungunya , Vacinas , Humanos , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/prevenção & controle , Lacunas de Evidências , Qualidade de Vida , Surtos de Doenças/prevenção & controle
2.
J Gen Virol ; 105(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421278

RESUMO

Background. Chikungunya virus (CHIKV) causes chikungunya fever and has been responsible for major global epidemics of arthritic disease over the past two decades. Multiple CHIKV vaccine candidates are currently undergoing or have undergone human clinical trials, with one vaccine candidate receiving FDA approval. This scoping review was performed to evaluate the 'efficacy', 'safety' and 'duration of protection' provided by CHIKV vaccine candidates in human clinical trials.Methods. This scoping literature review addresses studies involving CHIKV vaccine clinical trials using available literature on the PubMed, Medline Embase, Cochrane Library and Clinicaltrial.gov databases published up to 25 August 2023. Covidence software was used to structure information and review the studies included in this article.Results. A total of 1138 studies were screened and, after removal of duplicate studies, 12 relevant studies were thoroughly reviewed to gather information. This review summarizs that all seven CHIKV vaccine candidates achieved over 90 % seroprotection against CHIKV after one or two doses. All vaccines were able to provide neutralizing antibody protection for at least 28 days.Conclusions. A variety of vaccine technologies have been used to develop CHIKV vaccine candidates. With one vaccine candidate having recently received FDA approval, it is likely that further CHIKV vaccines will be available commercially in the near future.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vacinas Virais , Humanos , Vacinas Virais/efeitos adversos , Febre de Chikungunya/prevenção & controle , Anticorpos Neutralizantes , Bases de Dados Factuais
5.
J Travel Med ; 31(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091981

RESUMO

BACKGROUND: The global spread of the chikungunya virus (CHIKV) increases the exposure risk for individuals travelling to or living in endemic areas. This Phase 3 study was designed to demonstrate manufacturing consistency between three lots of the single shot live-attenuated CHIKV vaccine VLA1553, and to confirm the promising immunogenicity and safety data obtained in previous trials. METHODS: This randomized, double-blinded, lot-to-lot consistency, Phase 3 study, assessed immunogenicity and safety of VLA1553 in 408 healthy adults (18-45 years) in 12 sites across the USA. The primary endpoint was a comparison of the geometric mean titre (GMT) ratios of CHIKV-specific neutralizing antibodies between three VLA1553 lots at 28 days post-vaccination. Secondary endpoints included immunogenicity and safety over 6 months post-vaccination. RESULTS: GMTs were comparable between the lots meeting the acceptance criteria for equivalence. The average GMT (measured by 50% CHIKV micro plaque neutralization test; µPRNT50) peaked with 2643 at 28 days post-vaccination and decreased to 709 at 6 months post-vaccination. An excellent seroresponse rate (defined as µPRNT50 titre ≥ 150 considered protective) was achieved in 97.8% of participants at 28 days post-vaccination and still persisted in 96% at 6 months after vaccination. Upon VLA1553 immunization, 72.5% of participants experienced adverse events (AEs), without significant differences between lots (related solicited systemic AE: 53.9% of participants; related solicited local AE: 19.4%). Overall, AEs were mostly mild or moderate and resolved without sequela, usually within 3 days. With 3.9% of participants experiencing severe AEs, 2.7% were classified as related, whereas none of the six reported serious adverse events was related to the administration of VLA1553. CONCLUSIONS: All three lots of VLA1553 recapitulated the safety and immunogenicity profiles of a preceding Phase 3 study, fulfilling pre-defined consistency requirements. These results highlight the manufacturability of VLA1553, a promising vaccine for the prevention of CHIKV disease for those living in or travelling to endemic areas.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Adulto , Humanos , Anticorpos Neutralizantes , Vacinas Atenuadas , Testes de Neutralização , Febre de Chikungunya/prevenção & controle , Método Duplo-Cego , Anticorpos Antivirais
6.
Int J Biol Macromol ; 258(Pt 1): 128753, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104690

RESUMO

Viruses transmitted by arthropods, such as Dengue, Zika, and Chikungunya, represent substantial worldwide health threats, particularly in countries like India. The lack of approved vaccines and effective antiviral therapies calls for developing innovative strategies to tackle these arboviruses. In this study, we employed immunoinformatics methodologies, incorporating reverse vaccinology, to design a multivalent vaccine targeting the predominant arboviruses. Epitopes of B and T cells were recognized within the non-structural proteins of Dengue, Zika, and Chikungunya viruses. The predicted epitopes were enhanced with adjuvants ß-defensin and RS-09 to boost the vaccine's immunogenicity. Sixteen distinct vaccine candidates were constructed, each incorporating epitopes from all three viruses. FUVAC-11 emerged as the most promising vaccine candidate through molecular docking and molecular dynamics simulations, demonstrating favorable binding interactions and stability. Its effectiveness was further evaluated using computational immunological studies confirming strong immune responses. The in silico cloning performed using the pET-28a(+) plasmid facilitates the future experimental implementation of this vaccine candidate, paving the way for potential advancements in combating these significant arboviral threats. However, further in vitro and in vivo studies are warranted to confirm the results obtained in this computational study, which highlights the effectiveness of immunoinformatics and reverse vaccinology in creating vaccines against major Arboviruses, offering a promising model for developing vaccines for other vector-borne diseases and enhancing global health security.


Assuntos
Arbovírus , Febre de Chikungunya , Dengue , Vacinas , Infecção por Zika virus , Zika virus , Humanos , Simulação de Acoplamento Molecular , Febre de Chikungunya/prevenção & controle , Vacinas Combinadas , Vacinologia/métodos , Epitopos de Linfócito T/química , Biologia Computacional/métodos , Epitopos de Linfócito B , Vacinas de Subunidades
7.
Salud Publica Mex ; 65(2 mar-abr): 144-150, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38060859

RESUMO

OBJECTIVE: To assess larvicide and adulticide activity of different native strains of fungi on Aedes aegypti. MATERIALS AND METHODS: Third instar larvae were exposed for 72 h at a concentration of 1x108 conidia/ml of 15 fungi; only fungi that significantly affected the larvae were evaluated against the adult phase at a concentration of 2x1010 conidia/ml. Mortality readings were performed at 24, 48, and 72 h for larvae, and every day to 30 days for adults. RESULTS: Trichoderma longibrachiatum, Aspergillus aculeatus, and Metarhizium anisopliae had the best larvicidal activity at 24 h of exposure (p<0.05), causing mortalities of 100, 72, and 62%, respectively. Adult mosquitoes were more affected by Gliocladium virens (45% mortality), M. anisopliae (30% mortality), and T. longibrachiatum (23.33% mortality). CONCLUSION: The larval stage of Ae. aegypti was more susceptible than the adult phase to the pathogenic action of native fungi, with T. longibrachiatum being with the highest virulence.


Assuntos
Aedes , Febre de Chikungunya , Dengue , Metarhizium , Vírus , Infecção por Zika virus , Zika virus , Humanos , Animais , Aedes/microbiologia , Larva/microbiologia , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/prevenção & controle , México , Mosquitos Vetores , Dengue/prevenção & controle , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/prevenção & controle
11.
Science ; 382(6670): 503-504, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37917696

RESUMO

Travelers are first, but the real need is in endemic areas.


Assuntos
Febre de Chikungunya , Vacinas Virais , Humanos , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/prevenção & controle , Viagem , Mudança Climática
12.
Nat Commun ; 14(1): 6605, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884534

RESUMO

Arthritogenic alphaviruses are positive-strand RNA viruses that cause debilitating musculoskeletal diseases affecting millions worldwide. A recent discovery identified the four-and-a-half-LIM domain protein 1 splice variant A (FHL1A) as a crucial host factor interacting with the hypervariable domain (HVD) of chikungunya virus (CHIKV) nonstructural protein 3 (nsP3). Here, we show that acute and chronic chikungunya disease in humans correlates with elevated levels of FHL1. We generated FHL1-/- mice, which when infected with CHIKV or o'nyong-nyong virus (ONNV) displayed reduced arthritis and myositis, fewer immune infiltrates, and reduced proinflammatory cytokine/chemokine outputs, compared to infected wild-type (WT) mice. Interestingly, disease signs were comparable in FHL1-/- and WT mice infected with arthritogenic alphaviruses Ross River virus (RRV) or Mayaro virus (MAYV). This aligns with pull-down assay data, which showed the ability of CHIKV and ONNV nsP3 to interact with FHL1, while RRV and MAYV nsP3s did not. We engineered a CHIKV mutant unable to bind FHL1 (CHIKV-ΔFHL1), which was avirulent in vivo. Following inoculation with CHIKV-ΔFHL1, mice were protected from disease upon challenge with CHIKV and ONNV, and viraemia was significantly reduced in RRV- and MAYV-challenged mice. Targeting FHL1-binding as an approach to vaccine design could lead to breakthroughs in mitigating alphaviral disease.


Assuntos
Artrite , Febre de Chikungunya , Vírus Chikungunya , Vacinas , Animais , Humanos , Camundongos , Artrite/genética , Febre de Chikungunya/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM/genética , Proteínas Musculares/genética , Vírus O'nyong-nyong
13.
Vaccine ; 41(42): 6146-6149, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37690874

RESUMO

In a phase 2 safety and immunogenicity study of a chikungunya virus virus-like particle (CHIKV VLP) vaccine in an endemic region, of 400 total participants, 78 were found to be focus reduction neutralizing antibody seropositive at vaccination despite being ELISA seronegative at screening, of which 39 received vaccine. This post hoc analysis compared safety and immunogenicity of CHIKV VLP vaccine in seropositive (n = 39) versus seronegative (n = 155) vaccine recipients for 72 weeks post-vaccination. There were no differences in solicited adverse events, except injection site swelling in 10.3% of seropositive versus 0.6% of seronegative recipients (p = 0.006). Baseline seropositive vaccine recipients had stronger post-vaccination luciferase neutralizing antibody responses versus seronegative recipients (peak geometric mean titer of 3594 and 1728, respectively) persisting for 72 weeks, with geometric mean fold increases of 3.1 and 13.2, respectively. In this small study, CHIKV VLP vaccine was well-tolerated and immunogenic in individuals with pre-existing immunity. ClinicalTrials.gov Identifier: NCT02562482.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Humanos , Febre de Chikungunya/prevenção & controle , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunogenicidade da Vacina , Método Duplo-Cego
14.
Vaccine ; 41(43): 6495-6504, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37726181

RESUMO

Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitos that causes a debilitating disease characterized by fever and long-lasting polyarthralgia. To date, no vaccine has been licensed, but multiple vaccine candidates are under evaluation in clinical trials. One of these vaccines is based on a measles virus vector encoding for the CHIKV structural genes C, E3, E2, 6K, and E1 (MV-CHIK), which proved safe in phase I and II clinical trials and elicited CHIKV-specific antibody responses in adult measles seropositive vaccine recipients. Here, we predicted T-cell epitopes in the CHIKV structural genes and investigated whether MV-CHIK vaccination induced CHIKV-specific CD4+ and/or CD8+ T-cell responses. Immune-dominant regions containing multiple epitopes in silico predicted to bind to HLA class II molecules were found for four of the five structural proteins, while no such regions were predicted for HLA class I. Experimentally, CHIKV-specific CD4+ T-cells were detected in six out of twelve participants after a single MV-CHIK vaccination and more robust responses were found 4 weeks after two vaccinations (ten out of twelve participants). T-cells were mainly directed against the three large structural proteins C, E2 and E1. Next, we sorted and expanded CHIKV-specific T cell clones (TCC) and identified human CHIKV T-cell epitopes by deconvolution. Interestingly, eight out of nine CD4+ TCC recognized an epitope in accordance with the in silico prediction. CHIKV-specific CD8+ T-cells induced by MV-CHIK vaccination were inconsistently detected. Our data show that the MV-CHIK vector vaccine induced a functional transgene-specific CD4+ T cell response which, together with the evidence of neutralizing antibodies as correlate of protection for CHIKV, makes MV-CHIK a promising vaccine candidate in the prevention of chikungunya.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vacinas Virais , Adulto , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Febre de Chikungunya/prevenção & controle , Epitopos de Linfócito T , Vacina contra Sarampo , Vírus do Sarampo
15.
Sci Rep ; 13(1): 14398, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658134

RESUMO

The burden of vector-borne infections is significant, particularly in low- and middle-income countries where vector populations are high and healthcare infrastructure may be inadequate. Further, studies are required to investigate the key factors of vector-borne infections to provide effective control measure. This study focuses on formulating a mathematical framework to characterize the spread of chikungunya infection in the presence of vaccines and treatments. The research is primarily dedicated to descriptive study and comprehension of dynamic behaviour of chikungunya dynamics. We use Banach's and Schaefer's fixed point theorems to investigate the existence and uniqueness of the suggested chikungunya framework resolution. Additionally, we confirm the Ulam-Hyers stability of the chikungunya system. To assess the impact of various parameters on the dynamics of chikungunya, we examine solution pathways using the Laplace-Adomian method of disintegration. Specifically, to visualise the impacts of fractional order, vaccination, bite rate and treatment computer algorithms are employed on the infection level of chikungunya. Our research identified the framework's essential input settings for managing chikungunya infection. Notably, the intensity of chikungunya infection can be reduced by lowering mosquito bite rates in the affected area. On the other hand, vaccination, memory index or fractional order, and treatment could be used as efficient controlling variables.


Assuntos
Febre de Chikungunya , Humanos , Febre de Chikungunya/prevenção & controle , Vacinação , Algoritmos , Instalações de Saúde , Registros
16.
Chem Biodivers ; 20(8): e202300192, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37489706

RESUMO

Infection by viruses Chikungunya (CHIKV) and Zika (ZIKV) continue to be serious problems in tropical and subtropical areas of the world. Here, we evaluated the antiviral and virucidal activity of caffeine against CHIKV and ZIKV in Vero, A549, and Huh-7 cell lines. Results showed that caffeine displays antiviral properties against both viruses. By pre-and post-infection treatment, caffeine significantly inhibited CHIKV and ZIKV replication in a dose-dependent manner. Furthermore, caffeine showed a virucidal effect against ZIKV. Molecular docking suggests the possible binding of caffeine with envelope protein and RNA-dependent RNA polymerase of CHIKV and ZIKV. This is the first study that showed an antiviral effect of caffeine against CHIKV and ZIKV. Although further studies are needed to better understand the mechanism of caffeine-mediated repression of viral replication, caffeine appears to be a promising compound that could be used for in vivo studies, perhaps in synergy with other compounds present in daily beverages.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Infecção por Zika virus , Zika virus , Humanos , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/prevenção & controle , Cafeína/farmacologia , Vírus Chikungunya/genética , Simulação de Acoplamento Molecular , Antivirais/farmacologia
17.
Virology ; 585: 82-90, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37321145

RESUMO

Chikungunya virus (CHIKV) is responsible for incapacitating joint pains and is a significant health hazard in many countries. Though a definite need for a CHIKV vaccine is felt, long disappearance of CHIKV from circulation in humans has been a concern for vaccine development. Use of two separate pattern recognition receptor ligands has been shown to enhance immune response to the administered antigen. In addition, intradermal delivery of vaccine tends to mimic the natural mode of CHIKV infection. Therefore, in this study, we explored whether intradermal and intramuscular immunization with inactivated CHIKV (I-CHIKV) supplemented with dual pattern-recognition receptor ligands, CL401, CL413, and CL429, is an effective approach to enhancing antibody response to CHIKV. Our in vivo data show that I-CHIKV supplemented with these chimeric PRR ligands induces enhanced neutralizing antibody response after intradermal delivery, but is less efficient after intramuscular immunization. These results suggest that intradermal delivery of I-CHIKV with chimeric adjuvants is a possible way to elicited a better antibody response.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vacinas Virais , Humanos , Vírus Chikungunya/fisiologia , Ligantes , Anticorpos Antivirais , Febre de Chikungunya/prevenção & controle , Anticorpos Neutralizantes , Adjuvantes Imunológicos
19.
Lancet ; 401(10394): 2138-2147, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37321235

RESUMO

BACKGROUND: VLA1553 is a live-attenuated vaccine candidate for active immunisation and prevention of disease caused by chikungunya virus. We report safety and immunogenicity data up to day 180 after vaccination with VLA1553. METHODS: This double-blind, multicentre, randomised, phase 3 trial was done in 43 professional vaccine trial sites in the USA. Eligible participants were healthy volunteers aged 18 years and older. Patients were excluded if they had history of chikungunya virus infection or immune-mediated or chronic arthritis or arthralgia, known or suspected defect of the immune system, any inactivated vaccine received within 2 weeks before vaccination with VLA1553, or any live vaccine received within 4 weeks before vaccination with VLA1553. Participants were randomised (3:1) to receive VLA1553 or placebo. The primary endpoint was the proportion of baseline negative participants with a seroprotective chikungunya virus antibody level defined as 50% plaque reduction in a micro plaque reduction neutralisation test (µPRNT) with a µPRNT50 titre of at least 150, 28 days after vaccination. The safety analysis included all individuals who received vaccination. Immunogenicity analyses were done in a subset of participants at 12 pre-selected study sites. These participants were required to have no major protocol deviations to be included in the per-protocol population for immunogenicity analyses. This trial is registered at ClinicalTrials.gov, NCT04546724. FINDINGS: Between Sept 17, 2020 and April 10, 2021, 6100 people were screened for eligibility. 1972 people were excluded and 4128 participants were enrolled and randomised (3093 to VLA1553 and 1035 to placebo). 358 participants in the VLA1553 group and 133 participants in the placebo group discontinued before trial end. The per-protocol population for immunogenicity analysis comprised 362 participants (266 in the VLA1553 group and 96 in the placebo group). After a single vaccination, VLA1553 induced seroprotective chikungunya virus neutralising antibody levels in 263 (98·9%) of 266 participants in the VLA1553 group (95% CI 96·7-99·8; p<0·0001) 28 days post-vaccination, independent of age. VLA1553 was generally safe with an adverse event profile similar to other licensed vaccines and equally well tolerated in younger and older adults. Serious adverse events were reported in 46 (1·5%) of 3082 participants exposed to VLA1553 and eight (0·8%) of 1033 participants in the placebo arm. Only two serious adverse events were considered related to VLA1553 treatment (one mild myalgia and one syndrome of inappropriate antidiuretic hormone secretion). Both participants recovered fully. INTERPRETATION: The strong immune response and the generation of seroprotective titres in almost all vaccinated participants suggests that VLA1553 is an excellent candidate for the prevention of disease caused by chikungunya virus. FUNDING: Valneva, Coalition for Epidemic Preparedness Innovation, and EU Horizon 2020.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Idoso , Febre de Chikungunya/prevenção & controle , Vacinas Atenuadas , Anticorpos Antivirais , Vacinação , Método Duplo-Cego
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...